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Abstract—Live migration allows a running operating system (OS) to be moved to another physical machine with negligible downtime.
Unfortunately, live migration is not supported in bare-metal clouds, which lease physical machines rather than virtual machines to offer
maximum hardware performance. Since bare-metal clouds have no virtualization software, implementing live migration is difficult.
Previous studies have proposed OS-level live migration; however, to prevent user intervention and broaden OS choices, live migration
should be OS-independent. In addition, the overhead of live migration mechanisms should be as low as possible. This paper introduces
BLMVisor, a live migration scheme for bare-metal clouds. To achieve OS-independent and lightweight live migration, BLMVisor utilizes
a very thin hypervisor that exposes physical hardware devices to the guest OS directly rather than virtualizing the devices. The
hypervisor captures, transfers, and reconstructs physical device states by monitoring access from the guest OS and controlling the
physical devices with effective techniques. To minimize performance degradation, the hypervisor is mostly idle after completing the live
migration. A performance evaluation confirmed that the OS performance with BLMVisor is comparable to that of a bare-metal machine.

Index Terms—Virtualization, operating system, live migration, bare-metal cloud
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1 INTRODUCTION

L IVE migration is commonly employed in Infrastructure-
as-a-Service (IaaS) clouds. Live migration provides

greater management flexibility by allowing cloud vendors
to move a running operating system (OS) to another phys-
ical machine with negligible downtime [1]. For example,
cloud vendors stop physical machines to perform routine
maintenance, e.g., to replace failed devices and update
firmware [1]. Live migration allows cloud vendors to per-
form such maintenance without interrupting services. Sim-
ilar to routine maintenance, to anticipate hardware faults,
proactive fault tolerance [2], [3], [4] monitors various in-
dicators, such as temperature and cooling fan states, and
deals with faults proactively by replacing devices that are
about to fail. Jiang et al. [5] demonstrated that using live
migration for dynamic replacement of instances optimizes
data center efficiency. In addition to load balancing, live
migration provides convenient functions for IaaS clouds.

Increasingly, cloud users with heavy workloads require
high-end devices, such as graphics processing units (GPU),
solid-state drives (SSD), and InfiniBand network devices.
Recently, the performance of storage devices (e.g., NVM
Express [6] and 3D Xpoint SSDs [7]) and network devices
(10 GbE and 40 GbE) has improved significantly. In addition,
some devices offer rich functions, such as multiple queues
and Single Root I/O Virtualization (SR-IOV). However,
the advantages of these high-end devices are limited by
common software stacks, such as file systems and TCP/IP
stacks. To remove these limitations, user-mode drivers [8],
[9], [10], [11], new OS architectures [9], and optimal appli-
cations for modern devices [12] have been proposed. Un-
fortunately, typically, such approaches cannot be exploited
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in virtualized environments. For example, device virtual-
ization conceals native device functions from the guest OS,
and interrupt virtualization prevents the guest OS from
using physical interrupt controllers. Therefore, exploiting
such techniques in traditional IaaS clouds is difficult.

To satisfy heavy workload requirements, bare-metal
clouds have emerged as a new type of IaaS cloud. With
bare-metal clouds, vendors lease physical rather than vir-
tual machines (VM). Bare-metal clouds are attractive for
users who require guaranteed performance because they
can avoid virtualization overhead and obtain maximum
physical hardware performance. Thus, bare-metal clouds
are suitable for AI, big data, and high-performance com-
puting, where virtualization overhead is not negligible [13],
[14]. Bare-metal clouds are also favored by security-sensitive
users who are concerned about information leakage among
VMs in traditional multi-tenant clouds [15], [16]. Therefore,
bare-metal clouds have become widely available and are
supported by leading cloud vendors, such as IBM [17],
Oracle [18], Internap [19], and Rackspace [20].

Unfortunately, bare-metal clouds do not support live
migration. Live migration requires the ability to copy the
complete state of a source machine to a destination ma-
chine over a network. In conventional IaaS clouds, the
machine being migrated is a VM and its states are stored
in memory. Therefore, supporting live migration is easy. In
fact, many existing virtualization software, such as VMware
vSphere [21], Xen [1], and KVM [22] support live migration.
However, bare-metal clouds do not have a virtualization
layer, and therefore, machine states exist in physical hard-
ware. Thus, saving and restoring hardware states using a
conventional software-based approach is difficult.

Previous studies have shown that live migration can
be implemented in the OS layer [23], [24], [25]. However,
in bare-metal clouds, live migration schemes should be
independent of the OS for the following reasons. First,
cloud users should be considered separately from cloud
operators. If a live migration scheme depends on an OS,
the live migration operations must be performed by the
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user. However, it is impractical to expect users to anticipate
unpredictable maintenance and perform live migration as
required. Second, the range of supported OSs should be
broadened. If a live migration scheme is OS-dependent,
cloud users cannot freely select an OS. In addition, even
if a live migration scheme supports major OSs, installing
and maintaining the additional software for live migration
is a daunting task. Furthermore, users may customize OSs
to optimize the performance for high-end devices. Such
customization may conflict with a migration scheme that
only considers major OSs.

This paper proposes BLMVisor, a live migration scheme
for bare-metal clouds. BLMVisor utilizes a very thin hyper-
visor that directly exposes physical hardware to the guest
OS rather than virtualizing hardware devices. The guest OS
almost completely controls the physical hardware with little
virtualization overhead, thereby maximizing hardware per-
formance. During live migration, the hypervisor carefully
monitors and controls guest OS access to physical devices
based on device specifications and captures, transfers, and
reconstructs the physical device states from the source to
the destination machines. After live migration is completed,
the hypervisor does not interpose on access to devices from
the guest OS, thereby eliminating virtualization overhead as
much as possible.

BLMVisor’s primary challenge is handling physical de-
vice states. The CPU and memory states are relatively
easy to handle because modern CPUs have hardware-
assisted virtualization support that allows software to save
and restore internal processor states to and from memory.
Therefore, these states can be migrated using existing live
migration techniques [1], [26]. However, the internal states
of various physical devices, such as network interface cards
(NIC), timer devices, and interrupt controllers, cannot be
accessed by software. Therefore, the hypervisor cannot di-
rectly save or restore such internal states. To address this
problem, BLMVisor employs a set of techniques that capture
and reconstruct the internal physical device states indirectly
based on device specifications.

Although this scheme is device specific, it is not overly
restrictive. First, it is easier to implement a device state
migration scheme than to write a device driver for a phys-
ical device. For example, implementation of the migration
scheme for a Realtek RTL8169 NIC comprises only 1,176
lines of code (LOC). Most parts of the device states are
readable and writable, and only a few device states are
completely inaccessible. Such inaccessible states can be han-
dled by the proposed techniques. Second, there is typically
less device diversity in IaaS cloud servers than in client
machines. Most IaaS vendors use a common set of hardware
supported by hypervisor vendors. For example, VMware
develops and maintains device drivers for the vSphere ESXi
hypervisor. Therefore, maintaining device-specific software
for a set of server hardware is a practical approach.

BLMVisor assumes that the source and destination ma-
chines have the same hardware specifications, i.e., the same
CPU model, the same PCI devices in the same slots, and
the same types of other internal devices. In addition, the
destination machine must have at least as much memory
as the source machine. In bare-metal clouds, many cluster
nodes commonly have identical hardware specifications and

configurations. Therefore, preparing a spare machine for
live migration is reasonable and practical. BLMVisor also
assumes that the source and destination machines have ded-
icated NICs for the hypervisor to perform live migration.

The primary contributions of this paper are as follows.

• To facilitate live migration in bare-metal clouds, an
OS-independent set of techniques to migrate the
internal states of physical devices without incurring
high overhead is introduced.

• The implementation of a hypervisor based on BitVi-
sor [27] is described. The hypervisor can migrate
an unmodified Linux OS running on machines with
typical hardware, such as programmable interrupt
controllers (PIC), advanced programmable interrupt
controllers (APIC), programmable interval timers
(PIT), and Realtek RTL8169 NICs.

• The proposed BLMVisor is evaluated compared to
a commodity virtual machine monitor (VMM). The
results demonstrate that BLMVisor incurs negligible
overhead on network throughput and latency, and
reduces overhead in Redis and MySQL benchmarks
by 16.3% and 33.9%, respectively

Note that a preliminary version of this paper has been
published previously [28]. Differing from the preliminary
version, the implementation discussed in this paper sup-
ports multi-core CPUs. Supporting multi-core CPUs in-
volves several new issues, such as determining which core
should handle the NIC dedicated to the hypervisor, how
dirty bits in multiple cores should be handled, how the
hypervisor obtains control with sufficient frequency, and
how to implement synchronization among cores. Note that
these issues are related to the uniqueness of the BLMVisor
architecture and are addressed and summarized in Sec-
tion 4.6. In addition, a comprehensive evaluation was per-
formed based on this implementation. Nearly all bare-metal
clouds provide multi-core machines; thus, to demonstrate
the practicality of BLMVisor, it should be evaluated on
multi-core machines.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 describes the
BLMVisor design, and Section 4 explains the hypervisor
implementation. Section 5 presents the evaluation, and
Section 6 discusses potential applicability. Conclusions are
presented in Section 7.

2 RELATED WORK

Here, work related to the live migration of VMs, OSs,
containers, and processes is reviewed.

2.1 VM migration
Live migration of VMs is supported by several major
VMMs such as VMware’s VMotion [21], XenSource’s Xen-
Motion [1], and KVM [22]. Live migration enables cloud
vendors to manage multiple server machines effectively.
Proactive maintenance [1] and proactive fault tolerance [2],
[3] are crucial to maintain the health, reliability, and security
of physical machines. Live migration of VMs is supported
in VMMs because all VM states, including those of virtual
CPUs, virtual memory, and virtual devices, are stored in
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memory and are accessible from the VMM. Unfortunately,
virtualization overhead is inevitable in commodity VMMs.
Despite efforts to reduce such overhead, such VMMs incur
non-negligible overhead in resource-intensive and high-
performance computing applications [14]. Consequently,
bare-metal clouds have emerged as an attractive platform
for such applications.

Several studies have proposed live migration schemes
for VMs with direct-access devices [29], [30], [31]. When
a guest OS can directly access physical devices, as in PCI
pass-through, virtualization overhead is reduced signifi-
cantly. However, migrating the physical hardware states
of direct-access devices remains challenging. Nomad [29]
addresses problems related to location-dependent resources
and packet drops during migration by modifying user-level
libraries and device drivers in the guest OSs. Kadav and
Swift [30] introduced shadow drivers in the guest kernel
that efficiently save and restore the states of device drivers.
Pan et al. proposed CompSC [31], a scheme to migrate
device states by changing the device drivers in the guest
OS and incorporating an emulation layer in the Xen hyper-
visor. Although these approaches have effectively solved the
problems associated with migrating the physical hardware
states of direct-access devices, they cannot avoid guest OS
dependency. As mentioned previously, OS dependency is
undesirable in live migration schemes.

Several studies have addressed the OS dependency
problem in live migration with direct-access devices.
ReNIC [32] is a hardware extension scheme for SR-IOV NICs
that allows the VMM to import and export device states
for live migration and checkpointing. This scheme does
not require modification of the guest OS; however, it does
require hardware modifications. Vagabond [33] switches the
VM network interface between SR-IOV-based and virtual-
ized interfaces. Although the SR-IOV interface is dedicated
to the VM, it is still virtualized to switch interfaces trans-
parently from the guest OS. SRVM [34] addressed the OS-
dependency problem by supporting a live migration scheme
with SR-IOV devices. SR-IOV is a PCI device function that
duplicates the device interface using the device itself. Typi-
cally, each duplicated interface is assigned to a VM, similar
to PCI pass-through, and incurs negligible performance
overhead. SRVM migrates physical device states using dirty
memory tracking and SR-IOV VF checkpointing without
guest OS support. However, SRVM only duplicates SR-IOV
devices and does not dedicate all hardware to the guest
OS because core devices, such as interrupt controllers and
timers, must be virtualized so that a commodity VMM can
coexist with the guest OS. In addition, SR-IOV is not sup-
ported in all devices and requires additional device drivers
(VF drivers) in the guest OS.

2.2 Operating system migration
Live OS migration can be implemented by the OS without
the support of virtualization systems [23], [24].

Hansen et al. [24] proposed two prototype systems for
OS-level migration. The first system uses the L4 micro-
kernel and an adapted version of Linux that runs as an
L4 task (L4Linux). This system implements the pre-copy
migration of L4Linux’s OS memory image using a paging-
via-IPC mechanism and recursive L4 address spaces. The

second system implements self-migration via a modified
XenoLinux (a Linux Xen port). Note that these systems
require significant modifications to the original Linux OS;
therefore, they rely heavily on the guest OS. In addition,
they only migrate memory states, i.e., physical device states
are not migrated.

To address the problems associated with migrating phys-
ical device states, Kozuch et al. [23] exploited the suspend
and resume features implemented in many modern OSs.
They also migrated device and driver states in uniform
device descriptors for each class of devices using the export
and import routines implemented in the drivers. OS-level
migration eliminates virtualization overhead at runtime;
however, it requires OS modification, which is impractical
for bare-metal clouds.

OS-level containers can also support live migration [25].
Containers create a set of processes that are isolated from
other processes and run on top of a single kernel in-
stance. Containers are isolated and largely independent;
thus, checkpoints and migration are possible. Containers
also incur little virtualization overhead. However, the imple-
mentation heavily depends on the underlying kernel, which
limits the choice of kernels.

2.3 Process migration

Process migration [35], [36], which allows the migration of
processes from source to destination OSs with the coopera-
tion of both OSs, was an active research area in the 1980s.
However, process migration suffers from dependencies on
the source OS, i.e., so-called residual dependencies, whereby
the migrated processes require resources that are only avail-
able to the source OS. To address this, Zap [37] introduced a
process domain that provides a process group with a private
namespace. Although this concept provides the members of
the process group with the same virtualized view of the
system, it requires modification of host OSs.

3 DESIGN

The basic concept of live migration in BLMVisor is the same
as that in commodity VMMs, i.e., transferring the entire
machine state from the source machine to the destination
machine over a network. However, as the target machines
are physical rather than VMs, a new method to access the
physical machine states is required. This section describes
BLMVisor’s architecture, discusses the essential physical
device states to be migrated, and presents techniques for
migrating unreadable and unwritable device states.

3.1 Overall architecture

A live migration scheme for bare-metal clouds should
achieve sufficient performance because users require max-
imum hardware performance. The live migration scheme
should also be OS-independent because user intervention
in live migration should be avoided, the scope of supported
OSs should be increased, and the installation of additional
device drivers should be prevented.

In BLMVisor, the performance goal is achieved using
a thin hypervisor that limits the number of running guest
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Fig. 1. Comparison of commodity VMM and BLMVisor architectures

OSs to one. This design greatly reduces virtualization over-
head compared to commodity VMMs. A comparison of
commodity VMM and BLMVisor architectures is shown
in Fig. 1. In the commodity VMM (Fig. 1-(a)), the guest
OS runs on a VM and accesses virtual devices created
by the VMM. Access to a virtual device is converted to
an abstract interface of the backend driver in the VMM,
and the backend driver issues an actual physical device
access. A hardware interrupt from the physical device is
first trapped by the backend driver. Then, the virtual device
generates a virtual interrupt to notify the device driver of
the guest OS. These multiple indirect accesses and interface
conversions incur virtualization overhead. In contrast, in
BLMVisor (Fig. 1-(b)), the hypervisor allows the guest OS to
manage physical devices directly via their native interfaces.
In addition, the hypervisor does not interpose on hardware
interrupts (not even timer interrupts). Instead, interrupts
are delivered directly to and handled by the guest OS.
This architecture eliminates device virtualization and VM
scheduling, thereby providing execution environments that
are equivalent to those of bare-metal instances.

The second goal, i.e., OS-independency, is achieved be-
cause the hypervisor saves and restores the physical hard-
ware states without the support of the guest OS. Prior to live
migration, the hypervisor on the source machine saves the
physical hardware states with minimal operations. During
live migration, the hypervisor transfers the physical hard-
ware states to the hypervisor on the destination machine
over a network. The destination hypervisor receives the
states and restores them to the destination machine’s phys-
ical hardware. After live migration, the hypervisor returns
to a mostly idle state and waits for the next live migration.

In commodity VMMs, the hardware states are effectively
the software states of the VM; therefore, the VMM can
easily save and restore all hardware states (see “Virtual
Hardware State” in Fig. 1-(a)). In contrast, in BLMVisor,
the hardware states to be saved and restored are those of
actual physical devices (see “Physical Hardware State” in
Fig. 1-(b)). For CPUs and memory, saving and restoring
hardware states is not difficult because the hypervisor can
employ hardware-assisted virtualization functions to save

and restore CPU states, and it can simply read and write
the entire memory data. However, physical device states are
problematic because they can be unreadable or unwritable
by software. To address this problem, the hypervisor in-
spects and controls the physical devices based on their spec-
ifications. The hypervisor captures the unreadable states of
physical devices by monitoring access to the devices and
their behaviors. Then, it reconstructs the unwritable states
of physical devices by triggering a state transition that is
associated with device processing. Although reconstructing
all physical device states is difficult, reconstructing only the
essential device states is sufficient to achieve live migration.
The essential device states are described in the following.

3.2 Essential device states

In bare-metal live migration, two groups of essential phys-
ical device states must be migrated. The first is the config-
uration states. OSs typically modify these states to change
device behaviors. For example, an OS may configure a NIC
device to use a 1,000-Mbps link rather than a 100-Mbps link.
The configuration states must be transferred to reproduce
the same configuration on the destination machine. The
second group is the processing states, which are updated by
the devices themselves. For example, after a reset, a device
updates its status to indicate its readiness.

Both states must be transferred to enable the guest OS
to run continuously after live migration. If a configuration
state is unavailable, the guest OS will not recognize config-
uration changes and the driver may request unreasonable
device operations after a configuration change. For example,
assume a driver requests a transfer rate of 1000 Mbps for
a device set to 100 Mbps. In this case, many packets will
be dropped, and the connection will become unstable. If a
processing state is absent, the states managed by the driver
will not match those managed by the device. For example,
if the reset state is not transferred, the driver may attempt
to use the device before the reset is complete.

Note that not all states are essential to run the OS contin-
uously. For example, statistical states (e.g., statistical values,
such as the number of received packets) do not necessarily
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require migration because their values are generally not
evaluated after live migration, as such values are specific
to each source and destination machine. For applications
that require migration of statistical values of the source
machine, the hypervisor can migrate statistical states by
virtualizing their access; however, this can incur overhead.
Other non-essential states for live migration are interrupt
states. Interrupts are tightly coupled with physical device
states; thus, migrating them would be pointless or possibly
even damaging. For example, a non-maskable interrupt
issued by a failed physical device at the source must not
be migrated to the physical destination device because that
device has not failed.

Command register values also represent a non-essential
state. Command registers act as device interfaces that re-
ceive commands, and their values are not directly related
to the internal states of the device. For example, I/O APIC
has an end-of-interrupt notification register, i.e., a register to
notify the completion of interrupt handling in an interrupt
handler. Its value does not have meaning; therefore, migrat-
ing its value is also meaningless. Another example is a reg-
ister in a NIC to request the start of packet transmission. In
this case, a timing problem in which device state migration
begins just before or after issuing a command could occur.
If the migration begins just before issuing the command,
the command will be issued on the destination machine
immediately after the migration is finished as if the machine
had not changed. If migration begins just after issuing this
command, the source device starts the operation and sets
a status to indicate this transmission, which will then be
migrated by the hypervisor. Therefore, the command does
not result in the timing problem.

3.3 Capturing unreadable states

There are two types of unreadable states in physical devices,
i.e., write-only register states and internal states. Software
can write values to write-only registers; however, the writ-
ten values cannot be read. Such states are typically config-
uration states updated by the OS. Internal states, which are
typically processing states updated by the device, cannot
be accessed by software. The hypervisor cannot save such
write-only registers or internal states; thus, these require a
different approach.

To capture write-only register states, the hypervisor con-
stantly monitors the write I/Os to these registers. When the
guest OS issues an I/O write request to an I/O address, the
hypervisor intercepts the request, stores the written value in
memory, and forwards it to the physical hardware. During
live migration, the hypervisor obtains the last written value
of each monitored I/O address from memory and sends
it to the destination hypervisor. The I/O addresses to be
monitored can be determined by manually inspecting the
device specifications. Although this process is device spe-
cific, it only requires identification of the write-only register
addresses. Therefore, it is much simpler than writing de-
vice drivers. Although intercepting I/Os may incur some
overhead, such overhead will be negligible because there
are very few write-only registers and they are accessed
infrequently in modern computer architectures. An example
of I/O addresses to be monitored is discussed in Section 4.4.

To capture internal states, the hypervisor controls physical
devices and inspects their behaviors during live migration.
From these behaviors, the hypervisor can estimate the de-
vice states indirectly. These operations increase downtime
negligibly (Section 5.3.3).

3.4 Reconstructing unwritable states
The hypervisor reconstructs unwritable states indirectly by
controlling the physical devices such that they cause internal
state transitions to become the desired states. For example,
to reconstruct the internal register of a NIC, the destination
hypervisor sends dummy packets that change the register
value. This approach depends on device specifications and
controlling internal device states may appear non-trivial.
Fortunately, such states are relatively rare, and it is theo-
retically possible to set internal device states to the desired
states because the current states are the result of existing
software control. The implementation of these techniques
is feasible and relatively easy in real physical devices (Sec-
tion 4.5).

4 IMPLEMENTATION

This section describes the implementation of BLMVisor,
which is based on BitVisor [27]. BLMVisor uses the pre-copy
method [1], which comprises pre-copy and stop-and-copy
phases. In the pre-copy phase, the hypervisor transmits
memory data from the source to the destination machine
in background while the guest OS is running on the source
machine. When the amount of remaining memory becomes
sufficiently small, the stop-and-copy phase begins. In this
phase, the source hypervisor stops the OS and transmits
the remaining memory data, CPU states, and device states.
After setting the transmitted states on the destination ma-
chine, the destination hypervisor resumes OS execution. The
stop-and-copy phase incurs little downtime (typically a few
seconds at most). Note that, in addition to the pre-copy
method, the post-copy method [26] can also be supported.

The following sections describe the implementation to
migrate CPU, memory, and storage states using a common
algorithm, and describe the implementation for migration
of physical device states. Then, issues related to multi-core
systems and the implementation status are presented.

4.1 Migrating CPU states
The CPU is assumed to have a hardware-assisted virtual-
ization function that can save and restore processor states
from memory, such as Intel VT-x or AMD-V. For example,
Intel VT-x supports a memory structure called the virtual
machine control structure (VMCS), which retains the guest
and host processor states. VMCS contains the processor
states required for migration, including internal register
values that cannot be accessed by normal instructions. As
the hypervisor can read the guest processor states on the
source machine and write them on the destination machine
using the VMCS, it can easily migrate CPU states. General-
purpose registers and most model-specific registers are not
included in the VMCS; however, they are accessible via soft-
ware. Although the current implementation only supports
Intel CPUs, AMD CPUs can also be supported.
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4.2 Migrating memory data
Memory data are migrated using the pre-copy scheme [1],
in which the hypervisor first transfers all memory pages
from the source to destination machine in background. The
source hypervisor then detects pages that have been dirtied
by the guest OS during transfer and retransfers them to the
destination hypervisor. This step iterates until the number
of dirty pages becomes sufficiently small. The source hyper-
visor then stops execution of the guest OS and transfers the
remaining dirty pages. It is assumed that a dedicated NIC is
available for migration to prevent performance degradation
during live migration by transferring large amounts of
memory data across the network.

The current implementation has two limitations relative
to the conventional pre-copy method. The first is that the
current implementation transfers all memory data; essential
memory pages are not identified. Therefore, the amount
of transferred memory can be greater than that in exist-
ing VMMs. According to our experiment, the amount of
essential memory just after booting an OS was 491 MiB and
that after running Redis was 3,581 MiB on a 4 GiB memory
machine used in Section 5. Therefore, although there is room
for saving up to 3.6 GiB of memory transfer, savings are
not that much on busy machines. The second is that the
pre-copy transmission speed and threshold are fixed. In the
current implementation, the transmission speed is approxi-
mately 1 Gbps and the threshold is 64 MiB. Changing trans-
mission speed dynamically could improve the guest OS
performance during migration. These limitations are not ar-
chitectural and can be eliminated by additional engineering
efforts. Note that these limitations only affect performance
during live migration and total migration time, i.e., they do
not degrade performance during normal execution.

4.3 Migrating storage states
The current implementation assumes that the storage device
is an iSCSI device. Therefore, storage content can be shared
between the source and destination machines without being
copied. During live migration, the guest OS can access
the storage device continuously because the iSCSI server
address does not change. This is a standard configuration in
live migration systems to avoid long downtime. However,
it is possible to support live migration of storage devices
such as HDDs and SSDs. The device states of the host
controller can be migrated using the method described in
the following. For storage data, it is possible to apply a
background storage copy technique [14].

4.4 Capturing physical device states
During live migration, the source hypervisor must capture
the physical device states. To achieve this, the device reg-
isters are classified as readable, write-only, and internal
registers. The values of readable registers are read by the
hypervisor during live migration, those of write-only regis-
ters can be obtained by monitoring access to the registers in
the hypervisor, and those of internal registers are captured
and estimated by monitoring the device’s behavior in the
stop-and-copy phase.

In modern PC architectures, device registers are ac-
cessed via programmed I/O (PIO) or memory-mapped

TABLE 1
PIO ports monitored during normal execution

Device I/O port State

PIC 0x20 and 0x60 ICW 1
PIC 0x21 and 0x61 ICW 2–4 and other configurations
PIT 0x40 Timer interval
PIT 0x43 Mode of the timer

I/O (MMIO). The hypervisor can intercept PIO accesses
using hardware-assisted virtualization technology. A CPU
with virtualization technology manages a bitmap of PIO
addresses that determines whether the hypervisor should
intercept accesses to specified addresses. MMIO access is
intercepted by the extended page table (EPT). The hyper-
visor can configure the EPT such that access to specified
MMIO pages causes a page fault (i.e., an EPT violation).
An EPT violation transfers control from the guest OS to
the hypervisor; thus, the hypervisor can intercept access to
specified MMIO pages and interpose on the MMIO access.

4.4.1 Obtaining write-only register values
Registers in PITs are an example of write-only registers. PITs
are used by OSs to generate periodical timer interrupts. The
frequency-setting register is write-only; thus, the hypervisor
obtains its value by monitoring PIO access to the register.
For some device registers, the hypervisor must monitor a
sequence of I/O accesses because the type of I/O access
depends on the previous I/O accesses. PICs are an example
of such devices. In PIC initialization, four values, referred
to as the initial control words (ICW), are written to the PIC
by software. The first ICW (ICW1) is written to port 0x20,
and the remaining three ICWs (ICW2–ICW4) are written se-
quentially to port 0x21. Unfortunately, the ICWs are written
to write-only registers; therefore, to obtain their values, the
hypervisor must monitor the sequence of accesses to ports
0x20 and 0x21.

Note that monitoring write I/O access during normal
execution incurs some overhead; however, there are only
a few registers to monitor. TABLE 1 lists the addresses
(I/O ports) that should be monitored by the hypervisor. All
addresses are PIO ports for legacy devices (i.e., no MMIO
addresses). Legacy devices are assigned write-only registers
because only a 64-KiB address space is available in x86
PIO and I/O ports are valuable resources. Consequently,
these devices assign two different registers to a single port,
i.e., read-only and write-only registers, to reduce the num-
ber of I/O ports for register access. On the other hand,
MMIO address spaces are vast and no address is shared
between different functions. Fortunately, legacy devices in
recent commodity OSs are used only at boot time; therefore,
constant monitoring of the I/O accesses in such devices is
not required in modern machines.

4.4.2 Obtaining internal register values
An example of internal registers is those employed in the
Realtek RTL8169 NIC. In this device, internal registers are
related to packet reception and transmission operations.
With the RTL8169, the NIC and OS send network packets to
each other via memory buffers. When a packet is received
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Fig. 2. Obtaining internal pointer in Realtek RTL8169 by send-
ing/receiving dummy packets. “N” and “H” entries belong to the NIC and
host, respectively. The original internal pointer points to the fifth entry.

from the network, the NIC initially stores the packet in
a buffer, and then, the OS reads the packet in the buffer.
When sending a packet, the NIC and OS perform reverse
operations. Here, the buffers are organized into rings and
are managed by descriptors in memory.

There are two ring buffers, i.e., reception (RX) and trans-
mission (TX) ring buffers. Each entry of the descriptors
contains an OWN bit and a pointer to a buffer. If the
OWN bit is set, the entry is owned by the NIC and the
corresponding buffer is used to send or receive a packet. If
the OWN bit is cleared, the entry is owned by the software
(device drivers), and the corresponding buffer can be used
to read or write packet data. The NIC clears the OWN bit
when it receives a packet and stores it in the RX buffer and
when it sends a packet stored in the TX buffer. The OS will
set the OWN bit when it finishes processing the packet in
the RX buffer and when it stores a packet to be sent in the
TX buffer. The head of the RX ring buffers is pointed to by
the RX head pointer and the tail of the TX ring buffers is
pointed to by the TX tail pointer. Note that both pointers are
stored in the NIC’s internal registers and cannot be accessed
directly from software.

One way to obtain internal pointer values is to constantly
monitor communication between the OS and devices; how-
ever, this is expensive and should be avoided. Instead, the
hypervisor actively controls the devices and inspects their
behaviors in the stop-and-copy phase. This is a destructive
inspection, i.e., internal states are destroyed by the hyper-
visor’s operations. However, this is not a problem because
the guest OS on the source machine no longer needs to run
after the stop-and-copy phase. Just before this destructive
operation, the hypervisor saves the descriptor and buffer
data in memory; therefore, nearly all received and sending
packets transferred by DMA are saved properly. Although
some packets may be lost due to the timing problem, Ether-
net is originally an unreliable network, and, in any case,
there is a certain downtime in the stop-and-copy phase.
Fortunately, lost packets will be retransmitted by the upper-
layer protocol.

With the RTL8169, the source hypervisor sends and
receives dummy packets in cooperation with the destination
hypervisor to obtain the internal RX head pointer and TX
tail pointer values (Fig. 2). The hypervisor first stops the
guest OS in the stop-and-copy phase, and then increases the
number of descriptor entries by two and fills the descriptors
with entries to send or receive dummy packets, except for
the last one. In the middle of Fig. 2, all entries except for

N N N N N H H H H H

H H H H H H H H H H

N H H H H N N N N N

Put dummy descriptors

Receive or send n
dummy packets

Restore original ring buffer

Ti
m

e

Fig. 3. Setting an internal pointer in the Realtek RTL8169 by send-
ing/receiving dummy packets. “N” and “H” entries belong to the NIC and
the host, respectively.

the last one are “N,” meaning that the OWN bits are set and
owned by the NIC. Then, the hypervisor sends a request
to the NIC to send and receive packets. The NIC processes
the descriptor entries sequentially, starting from the entry
pointed at by the internal pointer and stopping at the last
entry (bottom of Fig. 2). Here, the hypervisor can obtain
the original internal pointer value by finding the boundary
between the entries where the OWN bit is set and cleared.

4.5 Reconstructing physical device states

During live migration, the destination hypervisor must re-
construct the device states. Device registers are classified
as writable or unwritable. Writable registers can simply be
written by the hypervisor, and unwritable registers can be
set by the hypervisor by carefully controlling the device. In
the Realtek RTL8169, the internal RX head pointer and TX
tail pointer are stored in unwritable registers. To control the
values of these registers, the destination hypervisor again
sends and receives the required number of dummy packets.

Fig. 3 shows this operation. Here, the destination hy-
pervisor first sets the same number of dummy entries in
the descriptor as the value of the internal pointer to be
set. For each entry, the OWN bit is set, and the buffer is
prepared for a dummy packet. As shown in the top of
Fig. 3, the hypervisor attempts to set the internal pointer
to five. Then, the hypervisor sends a request to the NIC to
send and receive packets. The NIC will send and receive
dummy packets until the internal pointer is incremented
to the desired value (middle of Fig. 3). To avoid receiving
unexpected packets, the NIC is configured to receive only
unicast packets whose destination MAC address matches
that of the NIC; thus, the NIC does not receive multicast
or broadcast packets. After setting the internal pointer,
the hypervisor restores the original descriptors and buffers
(bottom of Fig. 3). Finally, the hypervisors on the source and
destination machines exchange the MAC addresses of their
respective NICs.

Note that care must be taken relative to the order
in which device states are reconstructed because recon-
structing configuration states typically affects the processing
states. For example, reconstructing the configuration states
of a NIC may reset processing states. In contrast, recon-
structing the processing states does not affect configuration
states. Therefore, the hypervisor first reconstructs the con-
figuration states and then reconstructs the processing states.
The same sequence is employed for device initialization.
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4.6 Supporting multi-core system

In our previous work [28], the implementation only sup-
ported single-core systems; however, nearly all server ma-
chines in bare-metal clouds are multi-core systems. There-
fore, to evaluate BLMVisor in practical environments, it is
essential to support multi-core systems.

There are several issues related to supporting multi-core
systems. The first is which core should perform memory
transfer in the pre-copy phase. As described in Section 4.2,
a dedicated NIC is assigned to the hypervisor to transfer
memory data. In multi-core systems, if all cores attempt
to transfer memory data via this single NIC, NIC lock
contention occurs; thus, cores are frequently blocked, and
performance is reduced significantly. To avoid lock con-
tention, only a single core is assigned to use the NIC. To
reduce the performance impact on the guest OS, an idle core
should be selected dynamically. However, due to imple-
mentation complexity, the current implementation exploits
a fixed core for migration. This complexity arises because
the architecture does not include a virtual CPU scheduler
and physical CPUs are directly exposed to the guest OS.

The second issue related to handling dirty bits in mul-
tiple cores. In the pre-copy phase, the hypervisor must
periodically find dirty pages by monitoring dirty bits in the
entries of the EPT. Unfortunately, EPT entries of frequently
accessed pages (including their dirty bits) are cached in the
translation lookaside buffer (TLB) of each core. Therefore,
a core may not be able to read a dirty bit in other cores.
TLB shootdown (flushing all cores’ TLBs) synchronizes the
EPT entries; however, frequent TLB shootdown degrades
performance. Therefore, in the current implementation, each
core records its own dirty bits in shared memory.

The third issue is how the hypervisor obtains control
at sufficient frequency. In single-core systems, interrupts are
controlled by a PIC. As described in Section 4.4.2, the hyper-
visor must intercept write I/O access to some PIC registers
to capture the write-only states of the PIC. To intercept I/O
access to a register, the hypervisor configures the CPU to
cause a “VM exit” event upon access to the register’s port
address. A VM exit is an event where the CPU passes control
from the guest OS to the hypervisor. One of the write-only
states of the PIC is stored in a register that shares the port
address with the end-of-interrupt (EOI) register. Therefore,
the hypervisor must configure the CPU to cause a VM exit
event when accessing this shared port address to intercept
the write I/O access to the PIC register. Since the EOI
register is accessed frequently, VM exits occur frequently.
In contrast, interrupts in multi-core systems are controlled
by the IOAPIC, local APIC, and MSI(-x) mechanisms. Since
these mechanisms have no write-only states, the hypervisor
does not need to intercept write I/O access to them. As
a result, the number of VM exits is reduced significantly
(Section 5.2.2). Note that VM exits are costly operations;
thus, fewer VM exits are better in terms of performance.

However, fewer VM exits pose a problem. Since the
hypervisor cannot obtain control frequently, it does not have
sufficient opportunity to record dirty pages and transfer
memory pages in the pre-copy phase. In commodity VMMs,
the VMM manages the timer devices and timer interrupts
occur periodically, thereby allowing the VMM to obtain

control at sufficient frequency. However, in BLMVisor, timer
devices are completely handled by the guest OS and their
interrupts are delivered directly to the guest OS without
hypervisor intervention. To handle this situation, the hy-
pervisor uses the VT-x preemption timer, which forcibly
generates VM exits at a preset frequency. In the current
implementation, the VM exit frequency for the core that per-
forms memory copy is adjusted such that the memory data
can be transferred at the line rate of the NIC (approximately
once every 786µs), and the VM exit frequency of the other
cores is once per second, which is sufficient to record dirty
pages. In addition, the CPU is configured to not enter the
C2 or deeper C state, because the preemption timer stops
at these states. This issue is caused by the architecture that
significantly reduce virtualization overhead and changes in
device characteristics associated with supporting multi-core.
Note that the vCPU settings in the VMCS in the pre-copy
phase are the same as in the normal phase, except for this
preemption timer setting.

The last issue is how to synchronize among cores in
the stop-and-copy phase. When the stop-and-copy phase
begins, the hypervisor must gain control of all cores via VM
exits. However, if the hypervisor does not take any action,
VM exits will occur only once per second and delays will oc-
cur among the cores, which will extend downtime. To avoid
such delays without incurring additional overhead, the
hypervisor configures the CPU to cause VM exits on non-
maskable interrupts (NMI), and a pre-defined core sends
an inter-processor NMI to other cores when the stop-and-
copy phase begins, thereby immediately causing VM exits
on all cores. Note that the hypervisor still does not intercept
maskable interrupts to reduce virtualization overhead.

4.7 Implementation status
As a proof of concept, the current implementation supports
a multi-core CPU, interrupt controllers (PIC and APIC), a
timer device (PIT), and a Realtek RTL8169 NIC. A brief
investigation of device specifications suggests that other
devices, such as storage devices and high-end NICs, can
also be supported by BLMVisor. The migration code for the
Realtek RTL8169 requires only 1,176 LOC, including code
to capture unreadable states and reconstruct unwritable
states, as described above. This is much smaller than nor-
mal device drivers in general OSs. For example, the de-
vice driver for the Realtek RTL8169 in Linux version 4.9
(drivers/net/ethernet/realtek/r8169.c) contains
more than 6,800 LOC. Therefore, it is relatively easy to
implement such device-dependent code in BLMVisor.

5 EVALUATION

This section presents an evaluation of BLMVisor that mea-
sured performance compared to a bare-metal machine and
KVM.

5.1 Setup
In this evaluation, two physical machines with the same
specifications were used as the source and destination ma-
chines for live migration. Each machine had an Intel Core
i7-4790K CPU (4.00 GHz, four cores), 4 GiB memory, and
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Fig. 4. Network throughput of TCP/UDP inbound/outbound workload with 1 to 2048-byte packets (normalized to bare-metal)

Realtek RTL8169 and Intel PRO/1000 NICs. The Realtek
NIC was used by the guest OS and the Intel NIC was used
by the hypervisor to transfer the machine states. The guest
OS was Linux 3.4, unless specified, configured with a boot
option to exclude the C-state and enter the idle state via
polling rather than executing hlt or mwait instructions.
This configuration was designed to maximize system per-
formance. Note that no Linux code was modified, and no
additional software was installed. For some experiments,
Windows Server 2016 was used as the guest OS. iSCSI
storage was used for the root file system.

The evaluation was performed using a bare-metal ma-
chine (“Baremetal”), BLMVisor, and KVM configured to
assign the same number of virtual cores (vCPUs) as physical
cores to a guest OS. The assignment of physical CPU cores
to vCPUs was fixed. KVM was configured in two ways,
i.e., with a PCI pass-through NIC (“KVM (pass)”) and with
a Virtio NIC (“KVM (virt)”). Note that KVM in the pass-
through configuration cannot perform live migration. The
client in the benchmarks and the iSCSI server each had an
AMD Phenom II X6 1090T CPU (3.2 GHz), 8 GiB memory,
and a Broadcom BCM57788 NIC. Crucial CT512MX100SSD1
SSDs were used as storage devices by the guest OSs through
the iSCSI server. All machines were connected via a gigabit
Ethernet switch. Note that hardware interrupt distribution
is not supported by these Intel machines; thus, for fair
comparison, interrupt distribution among the VMs in KVM
was disabled.

5.2 Performance during normal execution

Performance during normal execution was measured, in-
cluding network throughput, latency, number of VM exits,
memory consumption, system benchmarks, and a database
benchmark.

5.2.1 Network throughput and latency

First, network throughput and latency were measured using
Netperf. A Netperf client ran on the AMD machine and a
server ran on the Intel machine. The TCP and UDP through-
put was measured while changing the packet size from 1 to
2048 bytes, and latency was measured as the round-trip time
of a packet with a 1-byte payload. In each configuration,

throughput and latency were measured 10 times, and the
average and standard deviation were calculated.

Fig. 4 shows network throughput. The measured val-
ues were normalized by the “Baremetal” value. The TCP
inbound throughput did not differ significantly among the
systems because multiple small packets were aggregated
into a single packet in the Linux TCP stack using Nagle’s
algorithm [38]. In the TCP outbound throughput, the “KVM
(virt)” overhead increased as the packet size increased from
1 to 16 bytes. Here, when the packet size was 1 byte,
multiple packets were merged into a single packet and the
number of packets sent from the NIC was small. When
the packet size increased to 16 bytes, packets could not be
merged into a single packet and multiple packets were sent
from the NIC. This caused overhead in packet processing
and interrupt handling for multiple ACKs. When the packet
size was 32 bytes, the TCP window size increased, and
multiple packets were acknowledged by a single packet,
thereby reducing the processing overhead of packet and
interrupt handling.

The UDP throughput with small packets also differed
among the systems. Specifically, the UDP inbound through-
put with “KVM (virt)” with 1 to 64-byte packets fell to only
17% or less of the throughput of “Baremetal,” and overhead
in the UDP outbound throughput with small packets was
approximately 40%. These overheads were caused by vir-
tualization. Even “KVM (pass)” incurred 10% overhead in
the UDP outbound throughput with small packets due to
interrupt handling. In contrast, the UDP inbound through-
put of “BLMVisor” and “KVM (pass)” was similar to that of
“Baremetal.” In the UDP outbound workload with packets
smaller than 32 bytes, the standard deviation of the through-
put of “KVM (pass)” was large because the iSCSI heartbeat
messages could not reach the server due to the presence of
many small packets and the interrupt handling overhead.
As a result, the iSCSI daemon reset the NIC’s link, thereby
disconnecting Netperf’s TCP connections.

Note that some packets were dropped in the UDP
outbound workload of “KVM (virt).” because the virtio-
net interface and tap device did not negotiate; therefore,
there was no link speed limitation. In addition, packet
transmission between these interfaces only involved data
copy in memory. As a result, the throughput between these
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Fig. 5. TCP and UDP network latency

TABLE 2
VM exits per second

Exit Reason Proposal KVM (pass) KVM (virt)

PAUSE - 1613955.1 1594912.9
APIC access - 62505.3 34355.9
IO instruction - - 9860.3
External interrupt - 16933.9 7437.4
Interrupt window - 5889.1 3.7
EPT violation 17.4 126.4 -
Exception or NMI 8.1 4.7 4.0
Control-register accesses - 0.2 0.2
Total 25.5 1699459.1 1646606.0
Total (excluding PAUSE) 25.5 57502.7 51693.1

interfaces was much higher than that of the physical NIC.
Therefore, some packets were dropped between the tap
and physical devices. Note that the throughput shown was
calculated by excluding such dropped packets.

Fig. 5 shows the TCP and UDP network latencies. In both
TCP and UDP workloads, the overhead was close to zero for
“BLMVisor” (TCP: 0.4%; UDP: -0.04%), approximately 15%
for “KVM (pass)” (TCP: 16.3%; UDP: 15.0%), and greater
than 30% for “KVM (virt)” (TCP: 30.2%; UDP: 35.7%). The
KVM overhead with the virtio device was caused by device
virtualization. Here, packets were handled by the device
drivers of the guest and host OSs and were forwarded
via the virtio interface. These processes incurred significant
overhead on network performance. Although the overhead
was mitigated by PCI pass-through, it was not eliminated
entirely. The remaining overhead was likely due to interrupt
interposition by KVM.

5.2.2 Number of VM exits
The number of VM exits was counted to analyze the
overhead of the virtualization layers. The Netperf latency
workload was used in this analysis. For this measurement,
BLMVisor was modified to have a counter incremented by
the VM exit handler and a VMCALL handler to read the
counter value. The number of VM exits in KVM was mea-
sured using the kvm_stat command. In all configurations,
the VM exits of all cores were counted.

TABLE 2 shows the number of VM exits for “BLMVisor,”
“KVM (pass),” and “KVM (virt).” Most VM exits occurred
in KVM due to “PAUSE”, which is executed by the guest
OS when it is idle; therefore, this event is not critical for
performance. The other VM exits that occurred in KVM
were related to interrupt handling, such as “APIC access,”
“External interrupt,” and “Interrupt window.” In “KVM
(virt),” VM exits for “IO instruction” occurred because the
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Fig. 7. Execution time of Sysbench tests.

guest OS handled I/O requests to virtio devices using PIO
access. These results show that, with KVM, I/O emulation
and interrupt handling were the primary cause of overhead
in latency. In contrast, the number of VM exits that occurred
with BLMVisor was less than 26 per second. This confirms
that BLMVisor can achieve performance that is comparable
to that of a bare-metal system.

In addition to the number of VM exits, the CPU cycles
per second spent in VM exits were counted by reading
the time stamp counter at each VM exit and VM entry,
excluding cycles spent for those operations. Here, 12,790.5
cycles were spent in “EPT violation,” 6,981.1 cycles were
spent in “Exception on NMI,” and 19,771.6 cycles were
spent in total (1.24 µs per core). This is considered negligible
overhead.

5.2.3 Memory consumption

Memory is an important resource in memory-intensive
workloads. However, virtualization layers consume some
memory for their own purposes. To evaluate this memory
consumption, the amount of memory available to the guest
OS was measured. In KVM, the host OS was configured
without a swap to avoid over-committing, and a VM was
configured to use as much memory as possible. Fig. 6 shows
the amount of memory measured by the free command.
Note that “KVM (pass)” and “KVM (virt)” had the same
memory configuration (both are shown as “KVM”). Com-
pared to “Baremetal,” the total memory in “BLMVisor” and
“KVM” was reduced by 131 MiB and 307 MiB, respectively.
Thus, BLMVisor’s simple architecture contributes to con-
suming less memory consumption, which will increase the
performance of memory-intensive applications.

5.2.4 System benchmarks

CPU, memory, and file I/O performance was measured
using Sysbench 1.0. These tests were run in four threads
(number of CPU cores). Since the storage was iSCSI, file
I/O was performed via the network. Here, performance was
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Fig. 8. Redis throughput with various workloads. Horizontal and vertical axes denote the number of client threads and the throughput in number of
operations per second (normalized by the bare-metal throughput), respectively.

measured 10 times for each configuration and plotted as the
average and standard deviation of the execution time.

The left graph in Fig. 7 shows the execution times of the
Sysbench CPU test, which calculated prime numbers. The
execution times were similar for all systems because there
were few VM exits in the CPU-intensive workloads.

The middle graph in Fig. 7 shows the execution times of
the Sysbench memory test, which randomly wrote mem-
ory in 16-MiB space. The total memory written was 100
GiB. Here, “BLMVisor,” “KVM (pass),” and “KVM (virt)”
showed 2.21%, 2.01%, and 1.78% increased execution time,
respectively. The overhead was caused by additional ad-
dress translations from the guest to host physical addresses.
With KVM, such address translations are indispensable for
the VMM to coexist with VMs on a single machine. On the
other hand. the BLMVisor’s hypervisor does not necessarily
require address translations because it uses identity map-
ping. The hypervisor only requires EPT to trace dirty pages
in the pre-copy phase. Therefore, overhead in BLMVisor can
be mitigated. This issue is discussed in Section 6.3.

The right graph in Fig. 7 shows the execution times of the
Sysbench file I/O test, which performed random access to a
random file. Here, the number of files was 128 (16 MiB each).
The access size was 16 KiB and the number of accesses was
200,000, yielding a total access size of approximately 3 GiB.
The read-write ratio was 3:2 and the fsync() function was
called every 100 accesses. The execution time of “BLMVisor”
increased by only 1.6%, whereas that of “KVM (pass)” and
“KVM (virt)” increased by 5.4% and 23.6%, respectively.
Note that the overhead differences may have been caused
by network latencies. Since the iSCSI protocol requires small
command and response packets, network latency affects the
performance of iSCSI storage.

5.2.5 Database benchmark

To evaluate the performance of real server applications, the
throughput of Redis [39] (version 3.0.0) with a YCSB bench-
mark client [40] and the execution time of an SQL workload
on MySQL [41] with a Sysbench OLTP test client [42] were
measured.

Fig. 8 shows the Redis throughputs. The workloads were
as follows: (a) update heavy workload (read ops:upload ops
= 50:50), (b) mostly read workload (read ops:upload ops =
95:5), (c) read only workload (read ops:upload ops = 100:0),
(d) read latest workload (read ops:insert ops = 95:5), (e) short
ranges workload (scan ops:insert ops = 95:5), and (f) read-
modify-write workload (read ops:read-modify-write ops =
50:50). Except for workload (d), the client read or inserted
records selected from a Zipfian distribution. In workload
(d), the latest updated record was mostly read.

In this experiment, Redis was configured to place no
data in storage, i.e., used as a cache server. There were
1,000,000 records in the test database and the client ran for
10 seconds each time. The throughput was measured for 1-
64 client threads. The graphs show the average and standard
deviation of 20 measurements for each configuration. Here,
a higher throughput denotes a better result.

The throughputs showed a similar trend in all work-
loads, i.e., as the number of threads increased, the difference
in overhead between the systems increased. With 64 threads,
“BLMVisor” incurred a 4.6–11.0% overhead, “KVM (pass)”
incurred a 10.3–25.5% overhead, and “KVM (virt)” incurred
a 41.0–49.5% overhead. The worst case was (a) update heavy
workload with 64 threads with all systems. This workload
involved heavy memory access, which caused many TLB
misses. Such TLB misses required EPT address translations,
which degrades system performance [43]. The overhead in
KVM was caused by I/O emulation and interrupt handling
in network packet processing.

Fig. 9 shows the execution time of the Sysbench OLTP
test with MySQL servers. Note that these measurements
were performed on Windows and Linux. MySQL versions
5.5.52 and 5.7.21 were used for Linux and Windows, respec-
tively. The test table contained 10,000 rows, and the number
of transactions was 10,000. Each transaction consisted of
14 read queries (SELECT) and four write queries (INSERT,
UPDATE, DELETE). The execution time was measured for 1–
32 client threads. The graph plots the average and standard
deviations of 10 measurements for each configuration. The
horizontal axis is the number of client threads and the
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Fig. 9. Execution time of Sysbench OLTP test with MySQL server on
Linux and Windows. The horizontal and vertical axes represent the
number of client threads and execution times (normalized by that of
bare-metal) of the benchmark, respectively.

vertical axis is the execution time of the benchmark. Here,
lower execution time indicates a better result.

In Linux, “BLMVisor” increased execution time by 1.6%
in the worst case (eight threads). In contrast, “KVM (pass)”
increased execution time by 2.1–44.7%, and “KVM (virt)”
increased execution time by 9.0% in the best case (one
thread) and 63.6% in the worst case (four threads). In Win-
dows, “BLMVisor” increased execution time by less than 8%
with 16 threads or fewer, and increased execution time by
19.0% with 32 threads. In contrast, “KVM (pass)” increased
execution time by 20.7–75.2%, and “KVM (virt)” increased
execution time by 34.3–111.5% (the best case was eight
threads and the worst case was 32 threads). This workload
was I/O intensive because it stored the result of each trans-
action in storage. In addition, the storage in this experiment
was iSCSI connected via the network. Consequently, there
were many network I/Os in the workload. Therefore, the
throughput with KVM was degraded significantly by I/O
emulation and interrupt handling. In contrast, BLMVisor
incurred much lower overhead with this workload.

5.3 Performance during live migration
Performance during live migration was measured, includ-
ing network throughput, VM exit number, and downtime.

5.3.1 Network throughput
To demonstrate that BLMVisor can perform live migra-
tion on a bare-metal machine and verify its performance,
network throughput during live migration of Linux and
Windows were measured. As described in Section 4.2, the
current implementation fixes the memory transfer speed
at approximately 1 Gbps. Therefore, this measurement in-
cludes the maximum overhead of the pre-copy phase.

Fig. 10 and Fig. 11 show the results for Linux and
Windows, respectively. The Netperf client measured the
throughput at 100-ms intervals. Live migration began three
seconds after initiating the Netperf benchmark. The pre-
copy phase took approximately 36 and 44 seconds for
Linux and Windows, respectively. The stop-and-copy phase
was less than one second for both Linux and Windows.
Thereafter, network throughput returned to the same level
as before live migration began. This result confirms that
BLMVisor had no critical performance impact on bare-metal
instances during live migration.
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Fig. 10. Network throughput of Linux during live migration
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Fig. 11. Network throughput of Windows during live migration

5.3.2 Number of VM exits
To analyze the performance impact of live migration, the
number of VM exits during the Linux live migration was
measured. Here, the workload was the same as that in
Section 5.2.2. The number of VM exits was essentially the
same as that under normal execution conditions, except for
those of the preemption timer. On average, the preemption
timer caused 837.5 VM exits per second, and the hypervisor
consumed approximately 320 ms per second (≈ 1,276 M
cycles / 4.0 GHz) to handle the VM exits. Note that most
VM exits occurred in the fixed core to transfer memory data.

The Sysbench CPU test was used during live migration
to clarify the impact of this overhead on CPU performance.
Here, single-thread execution times were measured for a
CPU core during normal execution, the pre-copying core
during live migration, and the other core during live migra-
tion. The execution times were 8.16, 11.93 (46.2 % increase),
and 8.17 (0.1 % increase) seconds, respectively. These results
demonstrate that, as expected, the performance impact of
the pre-copy core was moderately large, while the per-
formance impact on the other cores was negligible. The
additional operation of the hypervisor in the other cores was
recording dirty pages. Therefore, this result suggests that
recording dirty pages on each core is a reasonable design.

Next, multi-thread execution times were measured for
all cores during normal execution and live migration. Here,
the number of threads was four because the CPU has four
cores. The execution times were 2.04 and 2.22 (8.8 % in-
crease) seconds during normal execution and live migration,
respectively. Although the performance of the pre-copy core
was reduced significantly, the overall performance degrada-
tion was not excessive because the other cores mitigated the
performance degradation.

5.3.3 Downtime
Netperf was used to measure downtime during live migra-
tion with BLMVisor. The average, maximum, and standard
deviation of the downtime was 0.861, 1.15, and 0.104 sec-
onds, respectively. The downtime was primarily due to the
memory copy operation. In the current implementation, the
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pre-copy threshold is 64 MiB; thus, the hypervisor transmits
64 MiB of memory in the stop-and-copy phase. Here, with
the 1-Gbps NIC, sending 64 MiB required 0.5 second. Note
that downtime was also caused by transferring the CPU
and device states, setting the states (including sending and
receiving dummy packets), and updating the MAC table in
the network switch.

To analyze the downtime in detail, the number of re-
transmission packets during the stop-and-copy phase was
counted using tshark (the CLI version of WireShark). In the
stop-and-copy phase, 31 1,448-byte packets (44,888 bytes
in total) were retransmitted. These retransmission packets
consisted of two TCP retransmission packets, one fast re-
transmission packet, and 28 selective ACK response pack-
ets. Note that the retransmitted packets were divided into
smaller packets. The results demonstrate that the number of
retransmission packets is in a reasonable range.

6 DISCUSSION

This section discusses the potential applicability and future
development of BLMVisor.

6.1 Checkpointing

Checkpointing VMs is useful for management and fault
tolerance [44]. Note that live migration and checkpointing
mechanisms are similar. They differ only in whether they
send machine states to a file or a network and whether
they restore machine states on the same machine or a
different machine. Therefore, with only slight modification,
BLMVisor can be adapted to a checkpointing system.

6.2 Device support

Recall that BLMVisor is device dependent. To support new
devices, such as 10-GbE NICs, NVMe devices, InfiniBand
devices, and GPUs, a new migration module to save and
restore device states must be developed. Developers of such
migration modules must at least partially understand device
specifications. However, developers only need to enumerate
the registers of the essential states to be saved and restored.
This is much easier than writing device drivers, which re-
quires understanding the logic and control flow of the given
device. The migration modules for devices in the prototype
system require far fewer LOC than the device drivers. In
future, automation or assistant technologies for developing
device drivers will help develop migration modules.

6.3 Dynamically starting and stopping the hypervisor

Before and after live migration, BLMVisor has nothing to
do; however, it still incurs some overhead for some VM
exits and paging events (i.e., the EPT). If virtualization
can be turned off and on as required, overhead in normal
execution becomes zero and performance equal to that of
bare-metal machines can be achieved. This dynamic starting
and stopping of the hypervisor involves two issues. The
first issue is protection, i.e., if the hypervisor resides in
memory, it is not protected when the EPT is turned off.
This will not be problematic if the guest OS can be trusted;
however, this may be mitigated by technology that can

verify memory content. The second issue is how to start
the hypervisor. Since virtualization is turned off, there is
no event to pass control to the hypervisor. This could be
mitigated by installing some agent program in the guest OS.

7 CONCLUSIONS

This paper has presented BLMVisor, a live migration scheme
for bare-metal clouds. BLMVisor exploits a very thin hyper-
visor to allow pass-through access to physical devices from
the guest OS. To perform live migration, the hypervisor
captures and reconstructs physical device states, including
both unreadable and unwritable states. Unreadable states
are captured indirectly by monitoring accesses to device
registers and the behaviors of the given device. Unwritable
states are reconstructed indirectly by carefully controlling
the device. A prototype implementation based on BitVisor
supports live migration of PIC/APIC, PIT, and a Realtek
RTL8169 NIC, in addition to the CPUs and memory. Perfor-
mance was evaluated in a series of experiments that con-
firmed BLMVisor achieves performance that is comparable
to that of a bare-metal machine. In future, the overhead of
memory-intensive workloads will be reduced by dynami-
cally starting and stopping the hypervisor.
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